MongoDB# F3)I#8-20211223-02

BERSEEACIER

checkpoint => —4%$&(or EMEBEX/)) BEEIEZEADB
journal log 60ms B A db

db B%EE%60 ms Bl

"OK - committed" => BEEIH#E ? write concerns RE
BRBERAYEHE ? e HMeE?

knowingly log => BHKNE ALK

unknowingly log => KRB ALK

Write Concerns - Questions

When you write to the database:
What does Durable mean to you?
What does 'OK - committed' from the database mean?
What sort of data would not matter if the latest was lost in a crash?
Who decides what data must never be lost?

Is there a difference between knowingly lost and unknowingly lost?

Write Concerns

{x:99}
x:1)
{x:99}
{x:1}....{x:99} {XH
Siosicaior | .

{ok:1}
{x:1}

r Secondary y

Write some data
- Replication

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/51ki1KDJEyWkz1kV-image-1640237795605.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/48LANg6oh5A8V3c4-image-1640238366642.png

Write Concerns

{x:101}
Application Oplog

{ok:1}

New primary elected
- Keep writing data

Write Concerns

{x:100}
{x:99}

{x:101}

{ok:T) x:1)

Old primary coming back

EBEINFRREDL » server %78 rollback BEEN— => { x: 100} (8kR)

{x:107}
{x:99}

)

{x:101}
{x:99}

(1)

{x:101}
{x:99}

(1)

{x:101}
{x:99}

)

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/LLjDAcWlqBdgN3Vs-image-1640238415549.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/mamGXqUk0sI8jwSt-image-1640238497608.png

Write Concerns (x:101)

{x:99}
(x:1)
{x:100}
{x:99}
101 107
| appication ISR Rolback ES sl
{ok:1} {x:1} ’

1)

Resume Replication
- But has to fix his state to

resume

Write Concerns (x:101)
{x:99}

b 1)

{x:101}

. {x:99} .
sovicaion R - o0
ok:1 X: :

(1)

Old Primary will now
serve as Secondary

The case for Majority writes

in the previeous scenario:

date is writtten to the primary

primary acknowledges write to application
primary dies before secondary reads data

WHEFRUE R EZEAZ BEIZE(majoruty commit point) » A AEIBZ AIFA(E

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/0mRZdFeDnlJE5hoo-image-1640238562747.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/BZdfu2R1oiKJs0dI-image-1640238622753.png

The case for Majority Writes

In the previous scenario:

Data is written to the primary.

Primary Acknowledges write to application.
Primary dies before secondary reads data.
Secondaries have an election.

All trace of the acknowledged write (x=100) was silently lost!

The Majority Commit Point

An important concept to understand the upcoming slides:

The Primary knows what timestamp each secondary is asking for.

It, therefore, knows they have everything before that durable.

It, therefore, knows up to what timestamp exists on a majority of nodes.
And consequently, up to what point data is 100% safe.

Until a change is 100% safe, the Primary will keep it in memory.

Note that in a system with automated failover - safe means "If it fails over
seamlessly, this won't be silently lost."

= HREEEWrite Concern

OK, commitresd Bz

(w: BES/MEER) (j: MEAAEEM 0:5CiREE, 1:.68R)
w:0 RIERE

w:l,j:1

w: "majority" (j: 1)

w:3 BER(RKREERIMM - B—16BEK - BiERR)

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/ztBPvEq8CD8CwrRx-image-1640238761360.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/bHKAnFuE7H5KNaY8-image-1640238911776.png

Write Concerns

e MongoDB lets you specify what 'OK, committed' means.
o Received by the primary over the network but not examined. (w :0)
o Received and written by the primary - durable on primaries disk. (w :1,j: 1)
o Received and written by a majority. (w : "majority")

w is the number of servers, jis whether to wait for the next disk flush (default with majority)
L3

You can specify these in your application on any write, or on a connection, or an object you
use to write.

MongoDB will wait until it achieves the level you request or times out. If it times out, it may
still have done some part of it. In the event of a timeout, you may need to confirm the state.

Why not just always write to a majority?

varwc={w:0}

totalrecs = 10000

batchsize =1

nbatches = totalrecs / batchsize

var start = new Date()

for(x=0;x<nbatches;x++) {

recs =[]

for(y=0;y<batchsize;y++) {recs.push({a:1,b:"hello"})}
db.test.insertMany(recs, {writeConcern: wc})

}

var end=new Date()
print(* ${end-start} milliseconds)

Exercise - Write Concerns

The Manual page for insertOne shows we can specify the write concern using

db.collection.insertOne(<document>, {
writeConcern: { w: <value>, j: <boolean>, wtimeout: <number> }
b

In the shell, run the supplied code to measure the time taken to insert 10,000 small

documents using different write concerns and values of j. Use a for loop. Complete this table

'S
Durability Guarantee

Batch size w:0 w:l w:l, j:true w:"majority"
3

100

How would the relative location of the client and servers impact this?

EYREEE Read Concerns

RDBS FRBtE RS

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/UKzSJDUyJPnSJ7I8-image-1640239010111.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/D2tSUBqCfLK9n7Dt-image-1640239636788.png

Read local FHIRHIERA EH#E
Read majority :BEE—EEMER
Read snapshot :

Read Linearizable: :BERFZERER ST IERSHETE,

Wl 4t

v (:}‘ ﬁ_——>g\

Read Concerns

When reading you can choose how reads are impacted by what's durable

Read Local What's the latest on the Primary

Read Majority What's the latest that is 100% durable
Enabled by Majority commit point.

Read Snapshot Read what was there when our query starts.
This hides any changes whilst the query is going on.

But we need to keep data around whilst we do it.

Read Linearizable Wait until a majority catch up with my query time

EE I B MBS, 2

e Read from nearest Geographically ($RiTRIENES ping B > &/\E9)
e Read from a specific set of servers (RREIZLHFHI tag server)

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/iJFj4Cs5o6NUaKKk-image-1640240583240.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/2kPdvY1LGbZGS2Ae-image-1640239853753.png

Read Preferences

When do you think you would use each of the following?

Read from Primary Only

Read from Primary unless no Primary exists (primaryPreferred)
Read from any Secondary Only

Read from Secondary unless no secondary exists.

Read from nearest Geographically

Read from a specific set of servers

Which read preference would you use and why?

JENERER
Arbiter

An Arbiter does not have a copy of the data set and cannot become a primary.
An Arbiter participates in elections for primary and acts as a tie-breaker.
Arbiters are strongly advised against in production systems.
A system with Arbiters can be Highly Available OR Guarantee Durability

o Butnot both

Recap

Replication creates multiple identical copies of data.

Typically this is used for High Availability

Writes are to a Primary and replicated to Secondaries

The primary is elected by the cluster as needed.

This replication happens via the oplog

A write concern of “majority” is the one that ensures data durability.

The default write concernis 1for a Replica Set (*majority" in MongoDB 5.0+)
Friends don't let friends use Arbiters.

DIEETHRAS #5
* [treeman ikt 23 QOG99 2021 21:36:26
/| treeman Bt 5 Q9 2023 10:14:59

https://bookstack.treemanou.com/uploads/images/gallery/2021-12/FaHVQBXp6O5EAO0M-image-1640240657381.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/7GlKL03YZFWX7du3-image-1640240968077.png
https://bookstack.treemanou.com/uploads/images/gallery/2021-12/BjmFLZk7hGaHyjg9-image-1640241039739.png

	MongoDB教育訓練-20211223-02
	寫的關注度Write Concern
	讀的關注度 Read Concerns
	讀取資料會從哪個節點讀？
	非必要不使用

